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We analysed 12 years of species-specific emergence dates of plants at a Low-

Arctic site near Kangerlussuaq, Greenland to investigate associations with

sea ice dynamics, a potential contributor to local temperature variation in

near-coastal tundra. Species displayed highly variable rates of phenological

advance, from a maximum of 22.55+0.17 and 22.93+0.51 d yr21 among

a graminoid and forb, respectively, to a minimum of 20.55+0.19 d yr21 or

no advance at all in the two deciduous shrub species. Monthly Arctic-wide

sea ice extent was a significant predictor of emergence timing in 10 of

14 species. Despite variation in rates of advance among species, these rates

were generally greatest in the earliest emerging species, for which monthly

sea ice extent was also the primary predictor of emergence. Variation among

species in rates of phenological advance reshuffled the phenological commu-

nity, with deciduous shrubs leafing out progressively later relative to forbs and

graminoids. Because early species advanced more rapidly than late species,

and because rates of advance were greatest in species for which emergence

phenology was associated with sea ice dynamics, accelerating sea ice decline

may contribute to further divergence between early- and late-emerging species

in this community.
1. Introduction
Advancement of the annual timing of spring events, including the onset of plant

growth, is one of the most prominent and consistent signals of ecological response

to climate change [1,2]. In the Arctic, sea ice decline is a major abiotic consequence

of and feedback to climatic warming [3,4]. However, its potential role in terrestrial

vegetation responses to climate change is difficult to assess [5] and entirely lacking

in some parts of the Arctic [6]. Sea ice extent and its variation may indirectly influ-

ence variation in primary productivity and the distribution of vegetation types in

coastal regions of the Arctic [7,8], but potential associations between sea ice

dynamics and plant phenology remain largely untested [5].

Where examined, thinning and earlier seasonal retreat of sea ice have been

associated with earlier seasonal marine phytoplankton production [9,10] and

earlier tundra green-up [11]. Such assessments have not, however, yet been

made at the individual species level. If associated with sea ice dynamics,

species-specific phenological dynamics might contribute to changes in plant

community composition in a warming Arctic.

Our analyses coupled plant species-specific and community-level phenolo-

gical trends to variation in local weather and Arctic-wide sea ice extent (ASIE)

in a life-history context. Individual species’ mean timing of emergence relative
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to other species with which they co-occur may be predictive

of their responses to variation in abiotic conditions that

drive phenology. Our analysis used 12 years of observations

of species-specific emergence phenology at a long-term,

Low-Arctic field site near Kangerlussuaq, Greenland [2].
 cietypublishing.org
Biol.Lett.12:20160332
2. Methods
Our site and methods were detailed previously [2,11,12]. The site

is 20 km east of Kangerlussuaq, Greenland at approximately

6786’41.3100 N and 50820’25.2200 W, and lies approximately 150 km

inland from the Baffin Bay/Davis Strait sea ice region. Since 2002,

phenology has been recorded daily or near daily between early

May and late June on randomly located, circular plots measuring

0.5 m2 distributed over an area encompassing 3 km2. Sampling

methodology is described in the electronic supplemental material.

Phenological stages recorded were, for shrubs ‘bud burst’ ¼ leaf

buds swollen and scales opened, and for graminoids and forbs,

‘emergent’¼ at least 0.50 cm green tissue at the basal meristem or

first presence of newly emergent tissue. ‘Emergence’ hereinafter

represents the timing of both stages.

We estimated species’ rates of advance in emergence as the

slope of the regression of annual dates of emergence against

year. Species’ mean annual timing of emergence was estima-

ted using ANOVAs for each species with ‘emergence date’ as the

dependent variable, ‘year’ as a fixed factor and ‘site’ as a random

blocking variable. The grand mean of a species’ mean annual

dates provided an index of that species’ life-history strategy

along a continuum from early- to late-emerging species. Abiotic

correlates of species’ emergence were identified with proc LINEAR

(SPSS Statistics v. 22; electronic supplementary material) with

monthly mean temperature, total precipitation and ASIE (National

Snow and Ice Data Center, Boulder, CO, USA) for January–June,

the period previously identified as having the strongest statistical

association with community phenology at the site [11]. The ration-

ale for including ASIE rather than local sea ice extent is provided in

the electronic supplementary material. To analyse species’ rates of

phenological advance in relation to the strength of their association

with abiotic factors, we regressed species-specific slopes of the

regression of emergence dates versus ‘year’ against the standar-

dized regression coefficient of the abiotic factor identified in proc

LINEAR as the strongest statistically significant association with

emergence timing.

Community-level emergence was estimated using a sigmoi-

dal model of the mean daily proportion of the final number of

species emergent on each plot

Y ¼ 1

1þ e�ðaþbXÞÞ , ð2:1Þ

where Y ¼ daily mean proportion of species emergent, X ¼ ‘day

of year’, and a and b are the intercept and slope, respectively [12].

Yearly estimates of a and b were used to solve equation (2.1) for

annual dates of 10% (onset), 50% (mid-point) and 90% (end of)

community emergence. Abiotic factors associated with commu-

nity emergence were identified using proc LINEAR with the

same abiotic predictors above for January through May (onset)

and January through June (mid-point and end) of emergence

[11]. Data are archived online with the US National Science

Foundation’s Arctic Data Center.
3. Results and discussion
Species displayed highly individualistic trends in emergence

timing (figure 1a). The two deciduous shrubs Salix glauca and

Betula nana advanced not at all or at the lowest rate among all

species (0.28+0.21 and 20.55+0.19 d yr21, respectively;
PSalix ¼ 0.17, PBetula¼ 0.004), while Carex sp. and Pyrola
grandiflora advanced most rapidly (22.55+0.17 and 22.93+
0.51 d yr21, respectively; both p , 0.001). These latter rates

are comparable to those reported for advances in flowering

phenology at Zackenberg in northeast Greenland [13].

Abiotic factors associated with emergence varied among

species (figure 1b; electronic supplementary material, table

S1). However, the two most common were January ASIE

and local April total precipitation. Sea ice extent was the pri-

mary abiotic factor associated with emergence timing in 8 of

14 species, and was a significant factor in 10 of 14 species

(electronic supplementary material, table S1). In all but one

species (S. glauca) for which it was significant, January

ASIE positively associated with emergence, indicating earlier

emergence in years with reduced sea ice extent [11]. Associ-

ations with local monthly late-winter or spring temperature,

where significant, were negative, except for S. glauca (elec-

tronic supplementary material, table S1). Hence, declining

ASIE and local late-winter and early-spring warming were

associated with earlier emergence in 11 of 14 species.

Differential rates of advance altered the rank-order of

species’ emergence, re-organizing the phenological community

(figure 1c). Betula nana, Polygonum viviparum, S. glauca and Stel-
laria longipes exhibited significant ( p � 0.05) positive trends in

rank-order, assuming later positions in the emergence sequence.

Such re-shuffling of the phenological community may even-

tually alter species interactions and community composition if

more rapid advancement confers a competitive advantage for

seasonally limited resources [14]. Also, ecosystem carbon

dynamics could be altered if the relative abundance of

graminoids versus deciduous shrubs is affected [15].

Life history predicted species’ rates of phenological

advance: early species advanced more than later species

(figure 1d) (R2 ¼ 0.63, p ¼ 0.001). A similar relationship was

documented across 66 phenophases over 30 years at the

Poznań Botanical Garden in Poland [16]. Excluding the two

species with the fewest years of data in our record, Calamagrostis
sp. and Festuca sp. (see electronic supplementary material), did

not alter this relationship (R2 ¼ 0.64, p ¼ 0.002).

The magnitude (linear coefficient) of each species’ primary

abiotic predictor of emergence scaled with its rate of pheno-

logical advance (r ¼ 20.66, p ¼ 0.02) (figure 1e). Excluding

Calamagrostis sp. and Festuca sp. improved this relationship

(r ¼ 20.78, p ¼ 0.005). The four species exhibiting the greatest

rates of advance in emergence were associated primarily with

monthly ASIE (figure 1e). The magnitude of the primary abiotic

factor associated with species’ emergence timing was greater

for early than for late species when Calamagrostis sp. and Festuca
sp. were excluded (figure 1f ) (r ¼ 20.81, p ¼ 0.003).

Onset and progression of community emergence varied

among years (figure 2a). The onset of community emergence

advanced significantly by 22.36+0.66 d yr21 (R2 ¼ 0.57,

p ¼ 0.005) (figure 2b), and in association with increasing

April temperature (standardized beta ¼ 20.76, p ¼ 0.02).

The mid-point of community emergence advanced 21.61+
0.45 d yr21 (R2 ¼ 0.56, p ¼ 0.005), and in association with

declining June ASIE (standardized beta¼ 0.73, p ¼ 0.002).

The end of community emergence did not advance significantly

( p ¼ 0.07), ostensibly because while it was positively associa-

ted with June ASIE (standardized beta¼ 0.92, p , 0.001), it

was also positively associated with March temperature

(standardized beta¼ 0.53, p ¼ 0.007), and February precipi-

tation (standardized beta ¼ 0.44, p ¼ 0.02) (total R2 ¼ 0.86,

http://rsbl.royalsocietypublishing.org/
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p ¼ 0.001). Hence, the onset of community emergence advan-

ced with local spring warming while the end of community

emergence was prolonged with local spring warming.

Ascribing causality to associations between sea ice

dynamics and terrestrial ecological dynamics is a major chal-

lenge [5], and impossible on the basis of correlations [11].

However, declining sea ice extent may contribute to local

warming in some parts of the Arctic either by promoting

greater heat flux from the ocean to the atmosphere [3,4,17],

especially during winter months [17], or by altering sea-level

pressure and atmospheric circulation patterns, producing

negative North Atlantic Oscillation-like conditions over sea

and land [18]. While we cannot address such mechanisms, ana-

lyses of temperature data from our site appear consistent with

the hypothesis of local warming associated with sea ice decline.
June temperature at our site is significantly negatively corre-

lated with ASIE in each of the months from January through

June (electronic supplementary material, table S2). Addition-

ally, local monthly temperatures are significantly correlated

at one- to two-month lags from January through June (elec-

tronic supplementary material, table S3). Hence, warming in

winter months at the site is followed by warming in spring

and early summer months. Finally, the number of growing

days at the site, i.e. the number of days when temperature

equalled or exceeded 108C, increased significantly with May

and June warming (electronic supplementary material, table

S4). We regard these correlations as consistent with the hypoth-

esis that declining sea ice extent contributes to local warming,

which, in turn, results in more numerous early-spring days

favourable for plant growth, promoting advanced phenology.

http://rsbl.royalsocietypublishing.org/
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While local monthly precipitation at our site does not correlate

with sea ice extent from January to June (all p . 0.05), local

precipitation in April–June increases with local temperature

from February to April (electronic supplementary material,

table S5).

Our analyses reveal three important insights. First, species

respond highly individualistically to abiotic drivers [19].
Although variation in ASIE was most commonly associated

with variation in emergence, significant associations also

occurred with precipitation in four months and temperature

in five months. Hence, an exclusive focus on any single

environmental factor may compromise understanding of

plant phenological responses to climate change [20].

Second, as noted previously [19], species’ individualistic

life-history strategies are strong predictors of their responsive-

ness to abiotic drivers of phenology and rates of phenological

advance. Regardless of the abiotic factor involved, early species

were more responsive to these factors than late species,

and underwent more rapid rates of advance. This may, ulti-

mately, have consequences for community composition and

species interactions.

Finally, our results concur with the prediction that earlier-

emerging species should segregate from later emerging

species through more rapid advancement of the former com-

pared with the latter under warming [21]. In near-coastal

arctic plant communities, such divergence may be promo-

ted by differential responsiveness to local abiotic changes

associated with sea ice dynamics.
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